Measure Theory with Ergodic Horizons Lecture 26

Hahn Decomposition Theorem. For any signed measure
$$3$$
 on a reasurchle space $[X,B]$
Norm is a partition $X = X_+ \sqcup X_-, X_+ \in B$, such that $3|_{X_+}$ and $-3|_{X_-}$ are necessares.

(lain Every non-null positive set
$$P \in X$$
 watains a non-null purely positive set $P_{\downarrow} \in P$
with $\frac{1}{2}(P_{\downarrow}) \ge 3(P) > 0$.

It remains to collect all parely positive sets into one via 2 measure exhaustion.
Given pairwise dijoint sequence (Pi)icn of parely positive sets, we obtain let
Per be = 2 largest purely positive set disjoint treen UP; i.e.

$$3(P_n) = 2 sup 13(P) = P \leq X \setminus UP_i$$
 is purely positive}.
Thus, we obtain a supresse (Pn) new of purely positive disjoint sets, so
 $X_{+} := \bigcup P_n$ is purely positive. Recall that $3(X_{+}) < \alpha$ by one assumption,
new (µ(P_n)) is summable, in perficular µ(P_n) $\rightarrow O_n$ This implies that
 X_{-} is purely regelive: if there were a non-hall positive set P s X_, then

the llaim would give a purely positive non-call set
$$P^{\dagger} \leq P$$
 and taking
a large econgle u, we'd have $\Im(P_u) < \frac{1}{2}\Im(P^{\dagger})$, we trachiching the
clusice of P_u .

Remark. By definition, a signed measure 3 loess't attain the value + 00 or -00, how
ever the fact that
$$4 < \infty$$
 doesn't immediately imply that 3 is boarded
above. Nevertheless, the tahn decomposition implies this. Indeel:
 $3(X_{-}) \leq 3 \leq 3(X_{+})$.

Lebisque + Radon Nikodyn Theorem. (it p and v be o-timite measure on a
measurable space (X, B). Then
$$p = v_{2} + \mu_{0}$$
, where $\mu_{0} \perp v$ and $f : X \rightarrow Dpols is a non-
ugative B-mean cable function. (Recall that $v_{2}(B) := \int f dv.)$ This function f
is unique up to v-null extra When $\mu \ll v$, i.e. $\mu_{0} = B$, then v_{1} call this f
the Rudon-Nikodym defivative of μ over v_{1} denoted $d\mu/dv$.
Proof. The unique cass is HW, so we prove existence. As usual, by writing $X = \coprod X_{u_{1}}$,
where each $X_{u} \in B$ and is both μ and v there, we may restrict to each
 $X_{u_{1}}$ so assume WLOG that both μ and v are finite measures.
We aim to find a desired function f as follows: let
 $F := \{f \cdot X \rightarrow [0, \infty] : f in B-measurable and $\mu \ge v_{2}\}$.
Plus Note that $D \in F$ and F is closed mules (trinite) max: $f, g \in F$ then$$

$$\max(f,g) \in \mathcal{F} \quad \text{becase } \mu \left[\frac{7}{4fzg} > \sqrt{s} \right]_{\frac{1}{4fzg}} \quad \text{and} \quad \mu \left[\frac{7}{4gzf} > \sqrt{g} \right]_{\frac{1}{4gzf}}.$$

We for
$$\in \mathcal{F}$$
 so that $\lim_{n \to \infty} \int f_n dv = \sup_{X} \int g dv : g \in \mathcal{F}^3 \leq \mu(X) < \infty$. Replacing
and for with max (for f_{1,\dots,f_n}), we may assume that (for) is increasing.

Then
$$f = \lim_{x \to a} f_{a} exists and by the MCT, $\int f dv = \lim_{x \to b} \int f_{a} dv \leq \mu(B)$,
so $f \in F$ and $\int f dv = \lim_{x \to b} \int f_{a} dv = \sup_{x \to b} \int g dv : g \in F$. \Box ((kim)$$

Now let
$$p_{0} := p - v_{f}$$
 and we show that $p_{0} \perp v$. Indeed, applying the
previous lemma to p_{0} and v_{1} , we see that if $p_{0} \not \neq v_{1}$, then $\exists \leq v_{0}$
and a v -moment $A \in \mathcal{B}$ such that $p_{0} \mid_{A} \geq \leq v \mid_{A}$. But then $\exists \uparrow \leq \cdot 1_{A}$
contradict, the choice of $f := p - v_{f} \geq v_{f+1}$, so $p \geq v_{f+1} \cdot 1_{A}$, here $f \notin \leq \cdot 1_{A} \in \mathcal{F}$
but $(f d v \perp (f \neq \cdot \leq A) d v)$, a contradiction.

Coc. Let
$$\mu$$
, ν be s-finite measures on a measurable space (X, B) and suppose $\mu \ll 2$.
Then for any B -measurable $g: X \rightarrow R$ that is ν -integrable or non-
negative, we have
 $\int g dg = \int g \cdot \frac{d\mu}{d\nu} d\nu$. (4)

Loc (Chain rule). let p, v, & be o-timite measures on a measurable space (K, B).

If
$$\mu \ll \nu$$
 and $\nu \ll S$, then $\mu \ll S$ and $\frac{\lambda \mu}{\lambda S} = \frac{\lambda \mu}{\lambda \nu} \cdot \frac{d\nu}{dS}$.
Proof. By the mignerish of Redox-Nikody- derivatives, we just need to
show that $\frac{\lambda \mu}{\lambda v} \cdot \frac{d\nu}{dS}$ satisfies the defining property of $\frac{d\mu}{dS}$, i.e. that
 $\mu(B) = \int \frac{d\mu}{d\nu} \cdot \frac{d\nu}{dS} dS$
for all $B \in \mathcal{B}$. But previous weathers
 $\mu(B) = \int \frac{d\mu}{d\nu} \frac{d\nu}{dS} dS$.

Cor. Let
$$p, v$$
 be a finite measures on a measurable space (X, B) . If $p \sim v$, then

$$\frac{dp}{dv} = \left(\frac{dv}{dp}\right)^{-1}.$$
Proof. Follows from the chain rale applied to $p \ll v \ll p$:
 $1 = \frac{dp}{dp} = \frac{dp}{dv} \cdot \frac{dv}{dp}$.

Remark. Why call the Radon-Nikodym derivative a derivative? It's a HW exercise
to show that if a distribution
$$F$$
 of a locally finite Bond reasons μ on IR
is continuously differentiable. Here $d\mu = F^{\dagger}$, where λ is Lebesgue measure.
 $d\lambda$